
Ingeniería de Aplicaciones para la Web Semántica

Guest Lecturer:
Javier EchaizJavier Echaiz

jechaiz@cs.uns.edu.ar

2

JaviZJaviZ’ Ice breaker! ’ Ice breaker! ☺☺

3

El mitoEl mito

“Nuestro web site/service está a
salvo”:
– Tenemos firewalls.
– Firmamos/Encriptamos nuestros datos.
– Autenticamos a nuestros usuarios.
– Tenemos una política de privacidad.

4

G ov ’ t W
e b S i t e s

 ope n

t o H a c k
 A t t a c k

s

• C BS N
e w s , J a

n 2 5 , 2 0
0 3

Qwe s t
Glit c h

e x p o s e
s c u s t o

m e r

d a t a
� S e c u ri t y

f o c u s . c o
m

M a y 2 3 ,
 2 0 0 2

Hackers attack eBay
accounts— ZDNe t Ne ws

Ma r 2 5 , 2 0 0 2

N Y T i me s I n te r n a l

N e two r k H
a c k e d

— I nt er net . c om,
 Feb 27, 2002

NASA investigating

hacker theft of sensitive

documents-Comput erWorld Aug 8 , 2002
G litch at Fidelity C anada

exposes customer information
—Com puterW orld, M ay 30, 2002

H ack
er A c

cess
es

8 Mi l
l i on C

redi t

C ard
s

- C N N
, Feb

18,20
03

Viven d i Says O n lin e Sh ar eh o ld er Vo t in g Hacked— N e w sB yt e s, A p r 2 9 , 2 0 0 2
H a cke rs st e a l st u d e n t s
so c. se c. n u mb e rs— A B CNe ws, Ma r 6 , 2 0 0 3

F T D .c o m
 h o le le

a k s

p e r s o n a
l in f o r m

a t io n

— C N et , F
eb 13, 2

003Securi ty worri es hol d back U K onl i ne tax returns— T heR egi s ter , J an 29,2003

Sit e s Re v e a le d Pa s s w ords

For Thous a nds O f
Am e rit e c h Us e rs —
N e w sB yte s Fe b 2 2 ,2 0 0 2

Software bug bites U.S.
Military

— BBC, Mar 18,2003

Historias de terrorHistorias de terror

5

Requerimientos de seguridadRequerimientos de seguridad
• Autenticación: ¿sos quién decís ser?
• Autorización: ¿tenés permitido tenerlo?
• Confianza: ¿acepté trabajar con vos?
• Integridad: ¿fue alterado antes de que yo lo
obtuviese?

• Confidencialidad: ¿puede un “extra” verlo?
• Auditoría: ¿puedo probar que pasó?
• No-repudio: ¿podés argumentar que no lo
enviaste/recibiste cuando en realidad si lo
hiciste?

6

Soluciones generalesSoluciones generales
• Autenticación: usuario/password, firma digital basada en password y verificación de firma,

challenge-response, biométrica, smart cards, etc.• Autorización: aplicación de políticas, control de acceso, capacidades, gestión de derechos digitales. • Confianza: a partir de la verificación de la firma digital. • Integridad: Message Digest, autenticado mediante firma digital.• Confidencialidad: encripción/desencripciónmediante claves.• Auditoría: logueos encriptados para evitar el
tampering.• No-repudio: firmado/verificación con firma digital, confiabilidad del mensaje.

7

Here Comes the Web ServicesHere Comes the Web Services

• Web Services provides cross-enterprise integration

8

Cyber Crime & Incidents on the RiseCyber Crime & Incidents on the Rise

9

Why Application Security Defects Why Application Security Defects
MatterMatter

• Frequent
• 3 out of 4 business websites are vulnerable to attack (Gartner)

• Pervasive
• 75% of hacks occur at the Application level (Gartner)

• Undetected
• QA testing tools not designed to

detect security defects in
applications

• Manual patching - reactive, never
ending, time consuming and
expensive

• Dangerous
• When exploited, security defects

destroy company value and
customer trust

>1000 application ‘Healthchecks’ with AppScan –
98% vulnerable: all had firewalls and encryption
solutions in place…

32% Hijack Session/ Identity Theft
11% e-Shoplifting

21% Full Control and Access to Information

2% Delete Web Site 27% Privacy Breach
7% Modify Information

10

The Threat is RealThe Threat is Real

Security Threat

Privacy Threat

11
Without any protection, holes and backdoors exist at

every layer waiting to be exploited

Web Server

User Interface Code

Frontend Application

Backend Application

Database

Data
The business logic that
enables:

User’s interaction
with Web site
Transacting/interfacin
g with back-end data
systems (databases,
CRM, ERP etc)

In the form of:
3rd party packaged
software; i.e. web
server, shopping cart
sw, personalization
engines etc.
Code developed in-
house / web builder /
system integratorValid Input

HTML/HTTP
Browser

Invalid Input
HTML/HTTP

Web Application VulnerabilitiesWeb Application Vulnerabilities

12

CWVs vs. ASVsCWVs vs. ASVs

• Common Web Vulnerabilities (CWVs): vulnerabilities found in the
site’s technical building blocks including, CGI scripts, Web Servers,
Application Servers, or Database Servers.
In general, a CWV is:
– an unintended consequence of either flawed design or development of the

web application technology
– a misconfiguration of the 3rd party software

• Application Specific Vulnerabilities (ASVs): unique to a specific
application and native to the specific programming and configuration of
the application itself - not the underlying technologies
– exploits a software bug at the business logic layer of a specific application

13

Ten Types of Application HacksTen Types of Application Hacks
Through a browser, a hacker can use even the smallest bug or backdoor

to change, or pervert, the intent of the application
Threat Application Negative Outcome
Buffer overflow Form field: collect data Crash Server

Hidden fields Online shopping Alter prices, Defacement
Debug options Any Unsanitized code Admin Access
Cross Site scripting Text Field: collect data Identity Theft
Stealth Commanding CGI, Backend Direct O/S/Application Access
Parameter Tampering Data Fields Fraud, Data Theft, D/L DB
Forceful Browsing Web Server Unauthorized Site/Data Access

Published Vulnerabilities All tools Admin Access, Crash Server
3rd Party Misconfiguration Front/Back end Apps Admin Access

Cookie poisoning Customer account Session Hijacking

Commonly known attacks will fall under one or more of these categories.
I.E. SQL Injection – a type of parameter tampering with stealth commanding.

14

HIDDEN MANIPULATIONCOOKIE POISONINGBACKDOOR & DEBUG OPTIONSBUFFER OVERFLOWSTEALTH COMMANDING3RD PARTY MISCONFIGURATIONKNOWN VULNERABILITIESPARAMETER TAMPERINGCROSS SITE SCRIPTINGFORCEFUL BROWSING

DatabaseWeb Server Front end Application
Application Layer ThreatsApplication Layer Threats

User Interface Backend Application

15

Everyone Contributes acrossEveryone Contributes across
the Application Lifecyclethe Application Lifecycle

� Develop (Developer):
• Construct application
• Unit test application components

� Test (Tester/ QA Engineer):
• Create test plan
• Create, run & manage test scripts
• Defect assignment & tracking
• Delta and results analysis
• Approve release to production

� Audit (Ops & Security Auditor):
• Create operations plan
• Deploy & maintain business compliance
• Scheduled (or not!) application audits

AuditAudit

TestTest

DevelopDevelop

16

Web Services Security DriversWeb Services Security Drivers

17

All Tied Up With XMLAll Tied Up With XML

18

All Tied Up With XMLAll Tied Up With XML

19

All Tied Up With XML (STILL!!!!!)All Tied Up With XML (STILL!!!!!)

20

All Tied Up With XML (STILL!!!!!)All Tied Up With XML (STILL!!!!!)

suicides
allowed!!!

21

Web Services Security LayersWeb Services Security Layers

22

Web Services ThreatsWeb Services Threats

23

Co m m a n d I n j e c t i o n SO AP At t a c k sSQL Injection in
XQuery

XML/Web Services Attack VectorsXML/Web Services Attack Vectors
• Old Attacks still valid

– CWV’s
– Injection Attacks
– Buffer Overflow
– Denial of Service

• The New Manipulation Attacks
– Entity and Referral Attacks
– DTD and Schema Attacks

• The Next Generation Attacks
– Web Service Enabled Application Attacks
– Multi-Phase Attacks

Cross-Site Scripting in

Client Side XML
Documents

SA P/ B A PI
a tta c k s v i a

SOA P

E n t it y E xp a
n sio n At t ac

ks

E ndl ess l oop D eni al of
ser vi ce A t t acks

Schem a Redi rect i on At t acks

24

An attack on XXX Application Server
1. Find a web service which echoes
back user data such as the parameter "in"
2. Use the following SOAP request
3. And you'll get
C:\WinNT\Win.ini in the response (!!!)

How it works:
A. XXX App Server expands the entity “foo” into full text, gotten

from the entity definition URL - the actual attack takes place at
this phase (by XXX Application Server itself)

B. XXX App Server feeds input to the web service
C. The web service echoes back the data

Note: if the file contains "<" or "&" then this method may not work. The file
must either be well formed XML document or contain no tags/special
characters. But /etc//etc/passwdpasswd does not contain these.

...
<!DOCTYPE root [

<!ENTITY foo SYSTEM
"file:///c:/winnt/win.ini">
]>
...
<in>&foo;</in>

XML Attack Example (Entity Expansion)XML Attack Example (Entity Expansion)

25

Phases of Implementing Web ServicesPhases of Implementing Web Services
• Build

– New and existing applications are described in WSDL or as
a XML Schema and a SOAP engine is deployed in front of the application

• Publish
– The WSDL is published to UDDI or the schema/WSDL is
published directly to the relevant developers

• Deploy
– Web Application developers search for the Web Services available to them
– A Web Application is created using the Web Service(s)
– The Web Application is deployed to the Internet

• Run
– The Web Application calls the Web Service via SOAP over
HTTP(S)

26

Web Services Lifecycle ArchitectureWeb Services Lifecycle Architecture

Development Process

ServerServer

UDDI Directory
Action:Create Web ServiceOutput:WSDLAction:Publish to UDDI

Action:Discover and use WSDL fromUDDIOutput:Web Service EnabledApplicationAction:Deploy Web Application

SOAP/HTTP
BuildBuild

PublishPublish
DeployDeploy

RunRun

27

Security for each PhaseSecurity for each Phase
• Build

– Secure Coding Practices
– Secure Development Processes

• Publish
– UDDI Security
– Publish Security measures taken

• Deploy
– Secure Coding Practices
– Secure Development Processes

• Run
– Combination of Network and Application level security measures

28

When to Apply SecurityWhen to Apply Security
• Pre-Deployment

– Identify and Fix security related defects early in
the lifecycle

– Control Access to Web Services

• Post Deployment
– Implement common best practices

• Access control, Authentication and
Authorization

• Encryption
• Intrusion/Attack prevention
• Audit

29

Where to apply Web Services SecurityWhere to apply Web Services Security
• Perimeter

– The “Swiss Cheese Firewall”
– Web Services take advantage of existing ‘holes’ in the perimeter

• Port 80/443 HTTP(s)
– Lack of Application layer / Layer 7 awareness in the network
– The Business Units, NOT IT, are responsible for the creation
and deployment of and Access to Web services
• IT manages the production environment

• Application Layer Security for Web Services
– Allows for tight adherence to business logic
– Allows for granular Access Control and Authentication
– Supports the ad hoc and aggressively evolving nature of
Web Services enabled applications

30

AppScan DE 1.7:AppScan DE 1.7:
Visual Studio .NET IntegrationVisual Studio .NET Integration M$

Propaganda

31

AppScan DE 1.7 Features forAppScan DE 1.7 Features for
Visual Studio .NET DevelopersVisual Studio .NET Developers

Complete Integrated Development Environment with AppScan DE
• Integrated into Visual Studio . NET project hierarchy as AppScan Projects, Configurations & Test Runs
• Logical organization of all security unit testing projects and configurations for Visual Studio .NET solutions
• AppScan Configured and Launched from within Visual Studio .NET as part of normal workflow
• Single click scan automatically tests web applications

written in any language supported by Visual Studio .NET Including VB, C#, C++, and J#
• Provides customizable configuration settings to enable efficient security testing as part of the development cycle
• Review ‘developer centric’ test results and specific inline

real time fix recommendations directly from within the Visual Studio .NET development environment

32

AppScan DE 1.7:AppScan DE 1.7:
WebSphere Studio 5.0 PlugWebSphere Studio 5.0 Plug--inin

33

AppScan DE 1.7:AppScan DE 1.7:
Eclipse 2.0/2.1 PlugEclipse 2.0/2.1 Plug--inin

34

AppScan DE 1.7:AppScan DE 1.7:
JBuilder v8/9 PlugJBuilder v8/9 Plug--inin

35

AppScan DE 1.7 Features forAppScan DE 1.7 Features for
Java and VB6.0 environmentsJava and VB6.0 environments
Complete Integrated Development Environment with AppScan DE for:
WebSphere Studio 5.0, Eclipse 2.0/2.1, JBuilder v8/9, and VisualBasic 6.0

� Streamlined security testing - AppScan is configured and launched as normal part of workflow from within IDE using native IDE Plug-in
� User can set default values for the scan properties, or change them on the fly for every scan.
� Single click scan automatically tests web applications written in any language/environment supported by the IDE including Java, EJB, Servlets JSP, HTML, etc.
� Provides customizable configuration settings to enable efficientsecurity testing as part of the development cycle
� Review ‘developer centric’ test results and specific inline real time fix recommendations

37

Simple web servicesSimple web services
• A web service invocation embodies a
client/server interaction over open, free
and readily available technologies
– the request and response are encoded
(marshaled) in XML using the Simple
Object Access Protocol (SOAP)

– service references are encoded in XML
using the Web Services Definition
Language (WSDL)

– SOAP may be implemented over any
transport protocol, but HTTP is most
common

38

Many configurationsMany configurations

left alone, all of the traffic through this diagram is XML (plaintext)
over HTTP (plaintext) on port 80

networknetwork
consumer

firewall
networknetwork

firewall

server
web

service
trust

service
auth

service

router
(e.g., vip)server 2
web

service

server 1
web

service

server n
web

service
…

server
web

service

server
web

service
consumer

server
web

service
consumer

server
web

service

txn server
web

service

server
web

service
consumer

39

Web services and securityWeb services and security
• What is the right mix between price,
performance, robustness, flexibility to an agile
enterprise, complexity and exposure to risk?
– under web services, we have to become
comfortable with our decisions all over again

• the dangers
– becoming overconfident in the face of
unacceptable exposure

– locking down our systems at the expense of
adaptability

40

Web service security positionsWeb service security positions

1. web services are really only useful internally, so security is not a concern
2. web services cannot be secured, and pose a significant threat to the security of an otherwise robust enterprise
3. web services can be secured using SSL and password authentication, just like e-commerce sites on the web
4. SSL is not sufficient to secure web services, but I do not have a basis for figuring out just what level of security I need or what options I have

41

Security domains of concernSecurity domains of concern

• authentication
– ensures that we know and approve access for the identity of a party in a given security domain

• authorization
– ensures that an authorized entity has access to a controlled subset of all available secured resources

• confidentiality
– ensures that only authorized parties can understand a secured message

• integrity
– ensures that a message arrives at its destination unaltered from the point it left its sender

• non-repudiation
– ensures that a sender cannot deny that he/she sent a given message; binds a transaction to a non-refutable identity

42

Impact on web servicesImpact on web services
• Questions arise because of the
plaintext concerns over a simple
WS architecture
–how to perform
authentication/authorization?

–how to guarantee integrity?
–how to enforce confidentiality and
non-repudiation?

43

A starting point for authenticationA starting point for authentication

• Let’s start with the simplistic authentication
provided by many e-commerce web sites
– HTTP BASIC-AUTH
– user name and password are encoded in the
HTTP stream as Base64 encoded plaintext
• stored in an HTTP header
• Authorization: Basic U2thdGVib2FyZdhcmVo…

– in this mode, simple Base64 decoding reveals the
credentials
• there is no encryption involved

44

Moving beyond BASICMoving beyond BASIC--AUTHAUTH
• While BASIC-AUTH is pervasive, it is not
secure

• for many, the next step is to secure the
BASIC-AUTH transmission using HTTPS
– HTTP is secured using the Secured Sockets Layer
(SSL)
• SSL encrypts the messages passed back and
forth in the HTTP conversation, including the
BASIC-AUTH header

• however, we mentioned earlier that SSL was
not sufficient to secure web services
– let’s talk about what is missing…

45

Why SSL is sufficient inWhy SSL is sufficient in
ee--commerce applicationscommerce applications
1. transactions are generally conducted within the web

application context at the e-commerce site
• there are no intermediaries or multi-party transactions

2. SSL conversations are conducted point-to-point
3. as long as the consumer can remit payment, user

credentials are “good enough” to authenticate and
authorize their transaction
• meanwhile, e-commerce sites cannot generally do

anything to gain non-repudiation with their customers
4. individual transactions are relatively small and will

not “break the bank,” when compared with total
throughput

46

on the other hand…on the other hand…
• an individual web service transaction
can involve literally millions of dollars of
potential risk exposure, versus a
shopping experience at amazon.com

• remember that web services are
systems transacting with systems
– an open communication channel could be
the conduit for a large volume of
transacting data

47

What about client certificates?What about client certificates?
• about this time, someone asks the question
above…
– the basic mechanism for authentication breaks
down when we start asking a system to supply a
user name and password anyway
• have you ever seen a user name and password
coded into system algorithms???

• have you ever abused a user name and
password that you learned from application
code???

– client certificates are one analogous, but more
secure, means for authentication

– a certificate is a token that contains credentials for
asynchronous encryption that remain confidential
to its owner

48

the SSL handshakethe SSL handshake
client server

3.1: send message 'handshake complete,' encrypted with session key 2.2.2: generate master secret and session key2.2.1: decrypt "pre-master" with server private key
1.2: send identification1.3: send server public key1.1: send SSL version and ciphers

3: send message 'handshake complete,' encrypted with session key2.3: generate master secret and session key
2.2: send "pre-master" to server, along with client cert, if requested2.1: encrypt "pre-master" with server public key2: create "pre-master" secret key

1: send SSL version and known ciphers

all subsequent communications areencrypted symmetrically using thesession key

49

1. El cliente envía el msj. ClientHello

2. El server hace un ACK con el msj. ServerHello

3. El server envía su certificado

4. El server solicita al cliente su certificado

5. El cliente envía su certificado

6. El cliente envía el msj. ClientKeyExchange

7. El cliente envía el msj. Certificate Verify

8. Ambos envían msjs. ChangeCipherSpec

9. Ambos envían msjs. Finished

Server Certificate

Clave Privada
del Server

Clave Pública
del Server

Digital Sig

MasterSecret

Cliente Servidor

HandshakeHandshake ProtocolProtocol ((22))

50

The benefit of client certificatesThe benefit of client certificates
• Client certificates allow us to create
a secured SSL channel that
guarantees non-repudiation

• …so if we secure BASIC-AUTH
over HTTPS using client
certificates, is that enough???

51

The essential issue re: SSLThe essential issue re: SSL
• SSL encrypts the conversation between
a single client and server, including
authentication credentials
– however, there is no guarantee of non-
repudiation without a client certificate

– more importantly, you lose confidentiality
and non-repudiation in the presence of
ANY intermediaries or multi-party
transactions

52

Beneath the transport layerBeneath the transport layer
• Since we cannot do much to secure
the transport layer when it involves
a single link in an arbitrary chain,
what is left?
–we have to secure the message itself
– that requires us to take a look into
SOAP and a few security standards
for web services

53

simple web service interactionsimple web service interaction

• the sequence to the left might
be generated from JBuilder
using Apache Axis

– straight JAX-RPC and MS
.NET code will differ

– the ideas are somewhat
consistent across
implementations

• to add security features to the
XML communications, we can
intercept the process of
marshaling and unmarshaling
the request and response

helper implementationbinding portclient stubconsumer
2: invoke remote operation
1: bind/locate service

2.3: unmarshal results
2.2: send request2.1: marshal parameters into XML1.1.1: bind

2.2.3: marshal results into XML2.2.2: invoke operation2.2.1: unmarshal parameters
1.1: create

client server

54

Intercepting the SOAP request and Intercepting the SOAP request and
responseresponse

Client Web
Service

request

response

h
a
n
d
l
e
r

h
a
n
d
l
e
r

h
a
n
d
l
e
r

h
a
n
d
l
e
r

55

Anatomy of a SOAP messageAnatomy of a SOAP message

• To add security to the
content in the SOAP body,
we will be altering the
received message

– for the receiver to get
back to the original
message, we must add
processing instructions

– those processing
instructions are added to
the SOAP header

56

A note on the structure of SOAP A note on the structure of SOAP
messagesmessages

• Standard web service requests take one
of two forms
– RPC, where the SOAP body is like a
function call with parameters

– Document, where the “request” is a
header, and the SOAP body is an XML
document

• In next slides will use the Document
form

57

Relevant security specificationsRelevant security specifications
• XML Signature
– for signing all or part of
an XML document

– provides integrity and
non-repudiation,
regardless of
intermediaries

• XML Encryption
– for encrypting portions
of an XML document

– provides
confidentiality,
regardless of
intermediaries

by adding these to the
authentication
capabilities of BASIC-
AUTH and SSL, the
security picture is
more complete
– there are other ways
to authenticate as well

– authorization is all that
is left
• often that requires
additional effort
on your part…

• we will get back to
this

58

CanonicalizationCanonicalization

• Before looking deeper into XML
Signature and XML Encryption, we must
define XML-C14N (Canonical XML)
– essentially, this allows two XML documents
that have dissimilar whitespace to be
compared

– this is relevant because different XML
processors may respond differently to
whitespace
• each whitespace character could alter a
signature or resulting ciphertext

59

C14N processing steps,C14N processing steps,
in case you don’t trust itin case you don’t trust it
1. the document is encoded in UTF-8 (RFC 3629)
2. line breaks are normalized to #xA before parsing
3. attribute values are normalized as if by XML validation rules
4. character and parsed entity references are replaced
5. CDATA sections are replaced with their character content
6. the XML declaration and DTD are removed
7. empty elements are replaced with start/end tag pairs
8. whitespace outside the document element and within start/end tag pairs is normalized
9. all whitespace in character content is retained
10. attribute value delimiters are set to quotation marks
11. special characters in attribute values and character content are replaced by character references
12. superfluous namespace declarations are removed
13. default attribute values are explicitly added to elements
14. lexicographic order is imposed on namespace declarations

and attributes for each element

60

Fundamentals of signaturesFundamentals of signatures
• A signature is a special form of digestcomputed on a relevant block of data

– a hash code is computed on the data block using a well-known algorithm
• the sender computes the initial hash and adds it to the transmission
• the receiver computes the hash on the data and checks that both hash codes match
• this ensures the digest and the data block have integrity (they are unaltered from sender to receiver)

– to prevent hacking, the digest is hashed a second time and then encrypted
• the hashed and encrypted digest is called a signature
• private-key encryption provides non-repudiation

61

A sample of XML SignatureA sample of XML Signature
• <SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">• <SOAP-ENV:Header>• <SOAP-SEC:Signature SOAP-ENV:actor="" SOAP-ENV:mustUnderstand="1" xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"• xmlns:SOAP-SEC="http://schemas.xmlsoap.org/soap/security/2000-12">• <dsig:Signature xmlns:dsig="http://www.w3.org/2000/09/xmldsig#">• <dsig:SignedInfo>• <dsig:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315" />• <dsig:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />• <dsig:Reference URI="#43871">• <dsig:Transforms>• <dsig:Transform Algorithm="http://www.w3.org/TR/2000/REC-xml-c14n-20001026" />• </dsig:Transforms>• <dsig:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />• <dsig:DigestValue>... Base64-encoded Digest Value ...</dsig:DigestValue>• <!-- the digest is computed on the referenced element -->• </dsig:Reference>• </dsig:SignedInfo>• <dsig:SignatureValue>... Base64-encoded Signature Value ...</dsig:SignatureValue>• <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">• <KeyValue>• <RSAKeyValue>• <Modulus>... Base64-encoded Modulus ...</Modulus>• <Exponent>AQAB</Exponent>• </RSAKeyValue>• </KeyValue>• <X509Data>• <X509IssuerSerial>• <X509IssuerName>CN=Borcon 2004 Security Demo, OU=DevRel, O=Borland Software Corp, ST=CA, C=US</X509IssuerName>• <X509SerialNumber>4045383e</X509SerialNumber>• </X509IssuerSerial>• <X509SubjectName>CN=Borcon 2004 Security Demo, OU=DevRel, O=Borland Software Corp, ST=CA, C=US</X509SubjectName>• <X509Certificate>... Base64-encoded Certificate ...</X509Certificate>• </X509Data>• </KeyInfo>• </dsig:Signature>• </SOAP-SEC:Signature>• </SOAP-ENV:Header>• <SOAP-ENV:Body>• <request xmlns="http://localhost:7001/sec-web-service/BorconDemo" id="43871" submitted="2004-03-08">• ... the rest of the SOAP body goes here• </request> </SOAP-ENV:Body> </SOAP-ENV:Envelope>

62

Implementations of XML SignatureImplementations of XML Signature
• The following vendor libraries abstract
XML Signature processing in your SOAP handlers
– HP Web Services Platform 2.0
– IAIK XML Signature Library
– IBM XML Security Suite
– Infomosaic SecureXML Digital Signature
– Phaos XML
– RSA BSAFE Cert-J
– Verisign XML Signature SDK

63

The role of encryptionThe role of encryption
• To this point we have discussed
authentication, authorization, integrity
and non-repudiation
– the role of encryption is to provide
confidentiality

– it is the process of converting plaintext into
ciphertext

– we will go into the mechanics more in the
second part

– for now, consider that using XML
Encryption, we can selectively encrypt any
portion of the SOAP body

64

A sample document for encryptionA sample document for encryption
• <?xml version="1.0" encoding="UTF-8"?>
• <purchase-order>
• <customer>
• <account-number>ABC-12345</account-number>
• <name>ABC Company</name>
• <line1>123 Main St.</line1>
• <city>Boston</city>
• <state>MA</state>
• <postal-code>02134</postal-code>
• </customer>
• <order-date>2004-03-08</order-date>
• <shipvia mode="USPS Standard"/>
• <items>
• <item quantity="4" sku="AB431"/>
• <item quantity="8" sku="AA781"/>
• <item quantity="1" sku="ZD550"/>
• <item quantity="15" sku="CA112"/>
• </items>
• <promotion>111-0110</promotion>
• </purchase-order>

let’s say we encrypt
the account-number
element

65

a sample of XML Encryptiona sample of XML Encryption
•<?xml version="1.0" encoding="UTF-8"?>•<purchase-order>• <customer>•<EncryptedData Id="ed1" Type="http://www.w3.org/2001/04/xmlenc#Element"xmlns="http://www.w3.org/2001/04/xmlenc#">• <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>• <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">• <EncryptedKey xmlns="http://www.w3.org/2001/04/xmlenc#">• <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>• <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">• <KeyName>Borcon</KeyName>• </KeyInfo>• <CipherData>• <CipherValue>Jpa0fhVTFwjMtP5dPdsoMRZo1yDuDmNCR5mro75IY42erCiPFgFIDtHeaphz+OO+J/mbMO2zeuGaEW• 2I85pye/YlkKhS/fxosmGsOXH9Fl+wt1N9YNWju+rsERf9d0qpjn5bJaU4gAkGy7jVzJ+PaLLBL8Ka• ruVD9SddtFvhGCs=</CipherValue>• </CipherData>• </EncryptedKey>• </KeyInfo>• <CipherData>• <CipherValue>aimNgaCFUlwKwiYzZz/Pb32sCcaHEzYoJRx1l13TlRtIX9jbaTq6b0RueknguO9czdi2zHsdE20=</CipherValue>• </CipherData>•</EncryptedData>• <name>ABC Company</name>• <line1>123 Main St.</line1>• <city>Boston</city>• <state>MA</state>• <postal-code>02134</postal-code>• </customer>• <order-date>2004-03-08</order-date>• <shipvia mode="USPS Standard"/>• <items><item quantity="4" sku="AB431"/><item quantity="8" sku="AA781"/><item quantity="1" sku="ZD550"/>• <item quantity="15" sku="CA112"/></items>• <promotion>111-0110</promotion>•</purchase-order>

66

XML Encryption considerationsXML Encryption considerations

• You can encrypt multiple blocks using
different keys
– perhaps intended for use by different
parties in the same request

– encryption is retained through multiple
hops

• could we forego SSL completely?
– XML Encryption cannot secure the entire
message, just blocks within the body

67

Securing web service entry pointsSecuring web service entry points
• In addition to the security concerns
addressed so far, there should be
consideration for securing the entry points to
web services
– UDDI registries
– ebXML registries
– web application interfaces used for developing
and testing

• in most cases we have seen to date, WSDL
interfaces are published and directly
accessible from unsecured points in the
network

68

Securing UDDI/Securing UDDI/ebXMLebXML registriesregistries

• UDDI v3 provides additional support for
digitally signing several request elements
– businessEntity, businessService,
bindingTemplate, tModel, publisherAssertion,
etc…

– this allows consumers who look up web services
to be identified with non-repudiation

• moreover, authorization is implemented such
that publishers can modify only the entries
they created.

69

Additional tactics for securing Additional tactics for securing
registriesregistries

• Digitally-signed WSDL
• XML Encryption of private
request/response elements (recall that
registries are also web services)

• reducing authorization to the registry to
very short timed intervals to reduce
sniffing and replay attacks

• use SAML (described next) to make
assertions about the authorization of a
party

70

Security Assertions Markup Language Security Assertions Markup Language
(SAML)(SAML)

• Provides queries
and assertions in
XML
– authentication
– authorization
(decisions)

– attributes of known
security parties

• Open source
implementations
– www.sourceid.org
– www.openSAML.org
– etc.

• Commercial
implementations
– SunONE Identity Server
– Netegrity JSAML Toolkit
– Baltimore SelectAccess
– Systinet WASP Card

71

sample SAML request (query)sample SAML request (query)
• <?xml version="1.0"?>
• <samlp:Request xmlns:samlp="#"
• MajorVersion="1"
• MinorVersion="0"
• RequestID="123.45.678.90.12345678">

• <samlp:AuthenticationQuery>
• <saml:Subject xmlns:saml="#">
• <saml:NameIdentifier

SecurityDomain="pillartechnology.com"
• Name="kfaw" />
• </saml:Subject>
• </samlp:AuthenticationQuery>
• </samlp:Request>

• similar requests can make queries or assertions regarding authorization of a
party to secured resources, or to query about attributes for a given party within
the security domain

72

sample SAML responsesample SAML response
• <?xml version="1.0"?>
• <samlp:Response xmlns:samlp="#" MajorVersion="1" MinorVersion="0"
• RequestID="128.14.234.20.90123456"

InResponseTo="123.45.678.90.12345678"
• StatusCode="Success">

• <saml:Assertion xmlns:saml="#" MajorVersion="1" MinorVersion="0"
• AssertionID="123.45.678.90.12345678"
• Issuer="Pillar Technology Group, LLC"
• IssueInstant="2004-03-08T18:00:03Z">

• <saml:Conditions NotBefore="2004-03-08T18:00:10Z"
• NotAfter="2004-03-08T18:00:40Z" />

• <saml:AuthenticationStatement AuthenticationMethod="Password"
• AuthenticationInstant="2004-03-
08T18:00:00Z">

• <saml:Subject>
• <saml:NameIdentifier SecurityDomain="pillartechnology.com"

Name="kfaw" />
• </saml:Subject>
• </saml:AuthenticationStatement>
• </saml:Assertion>
• </samlp:Response>

73

WSWS--SecuritySecurity
• In light of all these lower-level technologies,
what is WS-Security?
– the simple answer… a specification defining how
they apply to SOAP

– submitted to OASIS (Organization for the
Advancement of Structured Information
Standards) in 2002 for development as a
standard

• WS-Security defines headers for subject
authentication, as well as specifications for
signing and encrypting that info

• There are also many related specifications
that are in various states of acceptance

74

Standards and standards bodiesStandards and standards bodies
• W3C

– SOAP
– XML Encryption
– XML Signature
– XKMS

• X-KISS (info system)
• X-KRSS (reg system)

• OASIS (Organization for the Advancement of Structured Information Standards)
– ebXML
– PKI
– SAML
– UDDI
– XACML (access ctrl)

•WS-I (IBM, Microsoft, BEA, Verisign)
– WS-Addressing
– WS-Authorization
– WS-Coordination
– WS-Federation
– WS-Inspection
– WS-Notification
– WS-Policy
– WS-Privacy
– WS-ReliableMessaging
– WS-Routing
– WS-SecureConversation
– WS-Security
– WS-Transaction
– WS-Trust

76

RoadmapRoadmap

• Cryptography and configuration
• The public key infrastructure
• Implementing symmetric and asymmetric
encryption in code

• Implementing digital signatures in code
• Applying XML Signature and XML Encryption
in code

• Putting it all together in a web service
invocation and response

• Some more technologies, SAML and XKMS.

77

Basic cryptography primerBasic cryptography primer

• Cryptography involves the mathematical
algorithms for performing encryption
and for computing hash code values

• there are four primary algorithm types in
common cryptography
– symmetric, a.k.a. shared secret
– block cipher
– hash function
– asymmetric, a.k.a. public key

78

symmetric algorithmssymmetric algorithms
• The same key, often called a shared
secret, is used for encryption and
decryption

• common algorithms
– IDEA – generally considered very secure;
128-bit key; free for non-commercial use

– RC4 – very fast; accepts keys of arbitrary
length
• RC4-40 is the symmetric algorithm used
in exportable SSL

79

block ciphersblock ciphers

• Convert a fixed-size block of data into another block of the same size
• therefore, they can be applied recursively to their own output, with the same or different keys
• common algorithms

– Blowfish – one of the most secure
– DES – common, but outdated; easily cracked by today’s standards
– RC5 – also common
– 3DES – essentially DES applied three times; usually encrypt-decrypt-encrypt with 3 different keys; pretty slow

80

hash functionshash functions
• consistently compute a fixed-length string
from an arbitrary block of data

• used to validate that the block it is computed
on has not changed

• common algorithms
– MD5 – in wide use; considered reasonably secure;
128-bit hash

– SHA – US government algorithm; also considered
pretty good; 160-bit hash

– SHA1 – an extension of SHA, to fix an
undisclosed attack point; 160-bit hash

81

asymmetric algorithmsasymmetric algorithms
• a public key is used for encryption, such that
decryption is only possible with a private key

• any message sender can encrypt, knowing
that only the receiver can decipher the
contents

• common algorithms
– RSA – most common; used for signing and
encrypting; longer keys (>1k-bit) make it more
secure

– Diffie-Helman – often used for shared-secret key
exchange

– DSS – used by the US government for signatures;
problems have been found with its use

82

Security providers (JCE)Security providers (JCE)
• as JDBC providers offer drivers to
support connecting to various
databases…
– security providers offer libraries of
algorithms to support various forms of
cryptography

– although Java Cryptography Extension
(JCE) security is integral to JDK 1.4, not all
algorithms are provided
• a notable exception is the RSA
algorithm, provided for signing, but not
encryption

83

enumerating JCE providersenumerating JCE providers

• public class ProviderInformation {
• public static void main(String[] args) {
• Provider[] providers = Security.getProviders();
• for (int i = 0; i < providers.length; i++) {
• Provider provider = providers[i];
• System.out.println("Provider name: " +
• provider.getName());
• System.out.println(" information: " +
• provider.getInfo());
• System.out.println(" version: " +
• provider.getVersion());
• Set entries = provider.entrySet();
• Iterator iter = entries.iterator();
• while (iter.hasNext()) {
• System.out.println(" - " + iter.next());
• }
• }
• }
• }

84

configuring additional providersconfiguring additional providers

• append additional lines to the java.security
file in jre/lib/security/

• add your security libraries to the Java
classpath
– typically place them in jre/lib/ext/

• to enable higher encryption, download an
unrestricted version of local_policy.jar and
US_export_policy.jar from the Sun web site
– these are also stored in jre/lib/security/

85

.net security framework.net security framework

• The security framework in .net is contained in
the assemblies under System.Security
– cryptography is under
System.Security.Cryptography

– algorithms supported out-of-the-box include
• symmetric – DES, 3DES, RC2, Rijndael
• asymmetric – RSA, DSA
• hash – MD5, SHA1

– in older versions of M$ Windows, support for
strong encryption is in the High Encryption Pack

86

Simple code examples Simple code examples –– symmetric symmetric
encryptionencryption
• Remember that the same key is used
for both encryption and decryption
– this is fast…
– however, it requires both sides to know the
“shared secret”
• how many secrets do you have to share
if you need confidentiality with N other
machines???

• how easy do you think it will be to keep
the shared secret with all those
machines???

87

In practice In practice –– basic JCE symmetric basic JCE symmetric
encryptionencryption
• public class SymmetricEncryption {
• public static void main(String[] args) {
• try {
• final String algorithmName = "Blowfish";
• KeyGenerator keyGen = KeyGenerator.getInstance(algorithmName);
• Key key = keyGen.generateKey();
• Cipher cipher = Cipher.getInstance(algorithmName);
• cipher.init(Cipher.ENCRYPT_MODE, key);
• System.out.println("Key and cipher generated by: " +
cipher.getProvider());

• System.out.println("Algorithm: " + cipher.getAlgorithm());

• byte[] plaintext = "Hello, everyone".getBytes();
• System.out.println("Original data: " + new String(plaintext));

• byte[] ciphertext = cipher.doFinal(plaintext);
• System.out.println("Encrypted data: " + new String(ciphertext));

• cipher.init(Cipher.DECRYPT_MODE, key);
• System.out.println("Decrypted data: " +
• new String(cipher.doFinal(ciphertext)));
• } catch (Exception ex) {
• ex.printStackTrace();
• }
• }
• }

88

Simple code examples Simple code examples ––
asymmetric encryptionasymmetric encryption
• in next slide, plaintext is encrypted with the
receiver’s public key
– only the receiver can decrypt, because the private
key is private

– anyone can send messages to the receiver
confidentially using the same public key

– key management is much easier in scalable
environments

– algorithms are generally considered more secure,
because the private key never leaves the
receiver’s possession

– however, this method of encryption is also slower
than symmetric encryption

89

iIiI practice practice –– basic .net asymmetric basic .net asymmetric
encryptionencryption

• using System;
• using System.Security.Cryptography;
• using System.Text;
• namespace Encryption {
• class AsymmetricDemo {
• [STAThread]
• static void Main(string[] args) {
• // simply creating the RSA provider generates a key pair by default
• // alternatively, we could then load a key into the created object
• Console.WriteLine("Generating RSA key and cipher");
• RSACryptoServiceProvider rsa = new RSACryptoServiceProvider();
• // convert plaintext to a byte array using UTF-8
• UTF8Encoding utf8 = new UTF8Encoding();
• byte[] plaintext = utf8.GetBytes("Hello, everyone");
• byte[] ciphertext = rsa.Encrypt(plaintext, true);
• Console.WriteLine("Original data: " + utf8.GetString(plaintext));
• Console.WriteLine("Encrypted data: " + utf8.GetString(ciphertext));
• byte[] decryptedText = rsa.Decrypt(ciphertext, true);
• Console.WriteLine("Decrypted data: " + utf8.GetString(decryptedText));
• Console.Write("Press <ENTER> to finish...");
• Console.Read();
• }
• }
• }

90

Applying cryptography to SOAP Applying cryptography to SOAP
messagesmessages

• The SOAP specification does not
provide provisions for securing
messages
– confidentiality of all or part of the
transmission

– authenticity through use of a digital
signature

– these are provided by XML Encryption and
XML Signature, respectively

91

XML SignatureXML Signature
• XML Signature (xml-dsig) allows us to add
signing information to an XML document
– compute a digest on a block of XML data
– add the digest to a SOAP header element
– optionally include our certificate, to aid the
receiver in validating the digest

• in Java, XML Signature must be hand-
coded, or use a utility library like wss4j

• the .net framework includes xml-dsig
classes in
System.Security.Cryptography.XML

92

In practice In practice –– performing XML performing XML
Signature in .netSignature in .net

• XmlDocument doc = new XmlDocument();
• doc.PreserveWhitespace = false;
• doc.Load(new XmlTextReader("initial-response.xml"));
• XmlNodeList list = doc.GetElementsByTagName("env:Body");
• XmlElement body = (XmlElement)list[0];
• Console.WriteLine(body.FirstChild.OuterXml);
• // Create a reference to the data to be canonicalized and signed.
• Reference reference = new Reference();
• reference.AddTransform(new XmlDsigC14NTransform());
• reference.Uri = "";
• // Create a SignedXml object and add the reference.
• RSACryptoServiceProvider key = new RSACryptoServiceProvider();
• SignedXml signedXml = new SignedXml((XmlElement)body.FirstChild);
• signedXml.SigningKey = key;
• signedXml.AddReference(reference);
• // Add the key so the receiver can validate our signature.
• KeyInfo keyInfo = new KeyInfo();
• keyInfo.AddClause(new RSAKeyValue((RSA)key));
• signedXml.KeyInfo = keyInfo;
• // Compute the signature and store it in the SOAP header.
• signedXml.ComputeSignature();
• XmlElement xmlDigitalSignature = signedXml.GetXml();
• doc.DocumentElement.FirstChild.AppendChild(doc.ImportNode(xmlDigitalSignature, true));
• // Save the signed XML document to a file so we can prove we did it.
• XmlTextWriter xmltw = new XmlTextWriter("initial-response-signed.xml", newUTF8Encoding(false));
• xmltw.Formatting = Formatting.Indented;
• doc.WriteTo(xmltw);
• xmltw.Close();

93

Results of XML SignatureResults of XML Signature• <?xml version="1.0" ?>• <env:Envelope xmlns:env=http://schemas.xmlsoap.org/soap/envelope/• xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance• xmlns:soapenc=http://schemas.xmlsoap.org/soap/encoding/• xmlns:xsd="http://www.w3.org/2001/XMLSchema">• <env:Header>• <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">• <SignedInfo>• <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315" />• <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />• <Reference URI="">• <Transforms>• <Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315" />• </Transforms>• <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />• <DigestValue>RjmqTulOiJr+Iu/GDC7CNUEAw9A=</DigestValue>• </Reference>• </SignedInfo>• <SignatureValue>oYtzba8fXmi5TTeqmR2XQVkhtNZrflDNHoDCDJv1JtZDPi1iQcWFvQxQXDVGDRImIgA+JhVNVSpP0wDUAdyKKBr+0SCnETkgO7kgxhCeWTZSr• hxJwAFMdW818HJaIAe14GPXDuUN7nPWszzmHxGWqcfGzsHlgPec8D+jvstqCkg=</SignatureValue>• <KeyInfo>• <KeyValue xmlns="http://www.w3.org/2000/09/xmldsig#">• <RSAKeyValue>• <Modulus>u0zEjEw9hPw5NmLTT+AkX7DDtn0UJtXnE7S1c2ZN6I/PEnGdbPm/Z72rksGrG3QNoZy7rZlfgPiHfGywjdmpTZN7ixp5j4MGgBcf/3NJ• oBRLsgVihe0x3dYLMlpoWW8pA4DczPU/SybQb4onSba2ub3aR9raefj5bwNJ5+7ajOU=</Modulus>• <Exponent>AQAB</Exponent>• </RSAKeyValue>• </KeyValue>• </KeyInfo>• </Signature>• </env:Header>• <env:Body env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">• <m:listImagesResponse xmlns:m="http://attachments">• <result soapenc:arrayType="xsd:string[3]">• <xsd:string xsi:type="xsd:string">attitude-simple-honest-direct.JPG</xsd:string>• <xsd:string xsi:type="xsd:string">Cary_Not_Carrry.JPG</xsd:string>• <xsd:string xsi:type="xsd:string">christmas-stars.jpg</xsd:string>• </result>• </m:listImagesResponse>• </env:Body>• </env:Envelope>

94

XML EncryptionXML Encryption
• XML Encryption defines a protocol for encrypting
portions of a SOAP transmission, including
– canonicalization
– identifying the node to encrypt, perhaps with XPATH
– producing an encrypted version of the node
– substituting the encrypted node for the plaintext node

• You could perform all the XML manipulation
yourself
– in .net, this is the only alternative open to you
– however, in Java there are toolkits to do both
encryption and signatures, e.g.,
• open source – Apache WSS4J (a subproject of WS-
FX). See next slide.

• commercial – IBM WSDK, etc. No slide about this?

95

Apache WSS4JApache WSS4J

• Apache WSS4J is an implementation of the
OASIS Web Services Security (WS-Security)
from OASIS Web Services Security TC.

• WSS4J is a primarily a Java library that can
be used to sign and verify SOAP Messages
with WS-Security information. WSS4J will use
Apache Axis and Apache XML-Security
projects and will be interoperable with JAX-
RPC based server/clients and .NET
server/clients.

96

Additional WSAdditional WS--Security supportSecurity support

• WSS4J also supports
– SAML, shipping with openSAML out of the box
– XML Encryption and Signature are implemented
as JAX-RPC handlers
• they plug into web service application
configurations declaratively

• other toolkits and commercial
implementations may also provide additional
support.

97

Second Wave SpecificationsSecond Wave Specifications

98

XML/PKI Security XML/PKI Security -- Web ServicesWeb Services

UDDI (Universal Description and Discovery)
WSDL (Web Services Description Language)
SOAP (Simple Object Access Protocol)
XML (eXtensible Markup Language)
HTTP (Hyper Text Transfer Protocol)

PKI (Public Key Infrastructure)
XML Signatures / XML Encryption
XKMS (XML Key Management Specification)
SAML (Security Assertion Markup Language)
XACML (eXtensible Access Control Markup Language)

XML/PKI Security Web Services

Application WS
XML Sig / Enc

SAML / XACML
Services

Client
XML Sig / Enc

XKMS Service
Key Info.

UDDI Service
Registry

Data Signed / Encrypted
HTTP / XML / SOAP

Trust and Interoperability

99

Scenarios Scenarios -- Conceptual ModelConceptual Model

Key Info.
Database

Database

Web App.net

Key Info.
Database

Database

Web App.
Browser

Browser

net

SAML/XACML
Assertion /

Authorization
Web Service

XKMS
Web Service

XKMS
Web Service

Web Service Web Service

PDP

PRP

Home
Jurisdiction

Neighboring
Jurisdiction

XKMS - XML Key Mgmt Spec
SAML - Security Assertion
XACML - eXtensible Access Control
PDP - Policy Decision Point
PRP - Policy Retrieval Point

Request Request –– Response:Response:
XML/PKI Security Process XML/PKI Security Process

SOAP via HTTP

XML Enc / Sig / XKMS

XML Req Schema

Validate Req
Get Request

Convert Req to XML

Enc & Sign Req

Send Secured Req

Web Service
Responds

Get Secured Req
SOAP via HTTP

Validate / Decrypt Req
XML Enc / Sig / XKMS

Parse XML Req
XML Req Schema

Local / Partners Data
Data Query

Partner Web Service
Responds

Auth-n & Auth-z WS

Convert Data to XML
XML Resp Schema

XML Enc / Sig / XKMS
Enc & Sign Resp

SOAP via HTTP
Send Secured Resp

XSLT Format / Layout

Get Response

Display Data

Web App Receives
Response

SOAP via HTTP

Validate / Decrypt Resp
XML Enc / Sig / XKMS

Parse XML Resp
XML Resp Schema

SAML / XACML

Web App Sends
Request

101

Quick introduction to PKIQuick introduction to PKI

• PKI stands for “Public Key Infrastructure”

– Public and Private key cryptography is used for:
• Digital Signatures
• Encryption

– A PKI is used for
• Verifying Digital Signatures
• Verifying the identity of a signatory
• Registering a user’s identity with a Trusted Third Party (TTP)
• Maintaining an online directory of Digital Certificates

– Remember – the “I” in PKI stands for “Infrastructure”

– We see these PKI features on the next slide…

102

Directory of
Public Keys

Certificate Authority
&

Registration Authority

Signed and Encrypted Communication

Private Key Private Key

Register Public Keys
Retrieve Public Keys

• Step 1 – Register Public Keys with PKI
• Step 2 – Retrieve Public Key in Digital Certificate from PKI Directory
• Step 3 – Encrypt document with recipient’s public key
• Step 4 – Sign document with sender’s private key

Four Steps of PKIFour Steps of PKI

103

Step 1 Step 1 –– Register Public Keys with PKIRegister Public Keys with PKI
• XKMS includes X-KRSS (XML Key Registration Service Specification)

• XKMS services can be used to register public/private key pairs
– For escrow services
– For revocation
– For recovery

• Keys can be generated on the client, providing that:
– A cryptographic engine is present on the client
– The client is capable of performing computationally-expensive cryptography
Otherwise, the XKMS service can generate the keys that are subsequently
managed through the service.

• With legacy non-XML key request protocols, such as PKCS#10, a client-
side toolkit was required to register keys. This could cause “toolkit bloat”

• http://www.w3.org/TR/xkms/

104

Step 2 Step 2 –– Retrieve Public Key in Digital Retrieve Public Key in Digital
Certificate from PKI DirectoryCertificate from PKI Directory

• DSML (Directory Services Markup Language) - OASIS

• DSML 1.0 provided a means of representing directory information in XML.
– Allows a directory to describe its schema in XML - a language another

directory or an application can understand

• The OASIS Directory Services TC is working on DSML 2.0, which adds:
– Support for querying directories
– Support for modifying directories

• DSML 2.0 will:
– Allow lightweight devices which don’t include an LDAP client (eg PDAs and

smart phones) to query a directory
– Bypass firewalls which block LDAP traffic at present

• http://www.oasis-open.org/committees/dsml/index.shtml

105

Step 3 Step 3 –– Encrypt document with recipient’s Encrypt document with recipient’s
public keypublic key

• XML Encryption – W3C

• Defines:
– A process for encrypting/decrypting digital content (including XML

documents and portions thereof)
– An XML syntax used to represent

• encrypted content
• information that enables an intended recipient to decrypt it

• Allows for element-wise encryption – meaning that an document
can be encrypted per-element – see example on the next slide

• http://www.w3.org/Encryption/2001/

106

XML encryption XML encryption –– elementelement--wise encryptionwise encryption

• Credit Card data to be encrypted

<?xml version='1.0'?>
<PaymentInfo xmlns='http://example.org/paymentv2'>

<Name>John Smith<Name/>
<CreditCard Limit='5,000' Currency='USD'>

<Number>4019 2445 0277 5567</Number>
<Issuer>Bank of the Internet</Issuer>
<Expiration>04/02</Expiration>

</CreditCard>
</PaymentInfo>

107

XML encryption XML encryption –– elementelement--wise encryptionwise encryption

• Scenario 1: Encrypt the entire CreditCard XML block:

<?xml version='1.0'?>
<PaymentInfo xmlns='http://example.org/paymentv2'>

<Name>John Smith<Name/>
<EncryptedData Type='http://www.w3.org/2001/04/xmlenc#Element'
xmlns='http://www.w3.org/2001/04/xmlenc#'>
<CipherData>

<CipherValue>A23B45C56</CipherValue>
</CipherData>

</EncryptedData>
</PaymentInfo>

108

XML encryption XML encryption –– elementelement--wise encryptionwise encryption

• Scenario 2: Encrypt only card's number, issuer, and expiration
date

<?xml version='1.0'?>
<PaymentInfo xmlns='http://example.org/paymentv2'>

<Name>John Smith<Name/>
<CreditCard Limit='5,000' Currency='USD'>
<EncryptedData xmlns='http://www.w3.org/2001/04/xmlenc#'

Type='http://www.w3.org/2001/04/xmlenc#Content'>
<CipherData>

<CipherValue>A23B45C56</CipherValue>
</CipherData>

</EncryptedData>
</CreditCard>

</PaymentInfo>

109

XML encryption XML encryption –– elementelement--wise encryptionwise encryption

• Scenario 3: Encrypt only the card's Number, but indicate that the
Number exists

<?xml version='1.0'?>
<PaymentInfo xmlns='http://example.org/paymentv2'>

<Name>John Smith<Name/>
<CreditCard Limit='5,000' Currency='USD'>
<Number>

<EncryptedData xmlns='http://www.w3.org/2001/04/xmlenc#'
Type='http://www.w3.org/2001/04/xmlenc#Content'>

<CipherData>
<CipherValue>A23B45C56</CipherValue>

</CipherData>
</EncryptedData>

</Number>
<Issuer>Bank of the Internet</Issuer>
<Expiration>04/02</Expiration>

</CreditCard>
</PaymentInfo>

110

Step 4 Step 4 –– Sign document with private keySign document with private key

• XML Digital Signature
• Joint IETF (Internet Engineering Task Force) and W3C (World-Wide Web Consortium initiative)

• Used for signing “Any digital content” – not just XML

• XML Digital Signature includes the following component parts:
– Encrypted Hash of a document
– Information on algorithms used
– Information on PKI directory (optional)
– Public Key Certificate (optional)

• XML Signature may be:
– Enveloped (XML signature located in source XML)
– Enveloping (XML signature wraps around the source XML)
– External (XML signature in a separate document to the source XML)

• http://www.w3.org/Signature/

111

XML Digital Signature ExampleXML Digital Signature Example

112

Signing Web ResourcesSigning Web Resources

• XML Digital Signature be used to sign web resources
referenced by URIs

• Signature is invalid if the resource
• has changed, or
• is unavailable
<?xml version=“1.0”?>
<Signature Id=“SimpleSignature" xmlns=http://www.w3.org/2000/09/xmldsig#>
<SignedInfo>
<CanonicalizationMethod Algorithm="http://www.w3.org/TR/2000/CR-xml-c14n-
20001026"/>
<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>
<Reference URI=“http://www.vordel.com/index.html">
<Transforms>
<Transform Algorithm="http://www.w3.org/TR/2000/CR-xml-c14n-20001026"/>
</Transforms>
<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>t54TgeGErewtWEtwetKYUQWDw</DigestValue>
</Reference>
</SignedInfo>
<SignatureValue>DSFrefjk7wdfWER</SignatureValue>
</Signature>

Signed URI

113

Signing XMLSigning XML

• Remember – XML Signature is not just for signing XML, but for
signing any digital content

• But there are specific issues when we are digitally signing XML

– The XML itself is typically not seen by the user, the user sees the
results after a style-sheet has processed the XML

– The XML rendered as HTML may depend on fonts or inline images
– The user must sign what they see, which may be very different from

the underlying XML
– Where the signing entity is a computer, other considerations apply

– who initiated the signing process, who is bound to the signing key

114

XML Digital Signature and SOAPXML Digital Signature and SOAP

• February 9, 2001 - IBM and Microsoft submit specification for
SOAP Security Extensions (SOAP-SEC) to W3C

• Proposes a standard way to use XML Digital Signature to sign
SOAP 1.1 messages

• Defines SOAP header entry <SOAP-SEC:Signature> for this
purpose

• Imports two optional headers for use in SOAP-SEC
– “actor” to indicate the recipient of a header element
– “mustUnderstand” to indicate whether an application must attempt

the validation of the enclosed XML Digital Signature

115

OASIS OASIS –– SAML and XACMLSAML and XACML

• SAML - Security Assertion Markup Language
– Allows companies to securely exchange

• Authentication information
• Authorization information
• profile information

– between their customers, partners, or suppliers regardless of the
security systems or e-commerce platforms that they have in place
today

• XACML - XML Access Control Markup Language
– Defines

• An XML specification for expressing authorization and
entitlement policies for information access over the Internet

– For fine-grained access control

• http://www.oasis-open.org/committees/security/index.shtml

Summary

116

XACML XACML –– Data ProtectionData Protection
• eXtensible Access Control Markup Language
• Conceived to support the separation of policy from applications,

data bases, and operating systems.
• Usage oriented doesn’t drive policy regarding collection or

disclosure.

• Facilitates
– more flexible systems
– policy enforcement in heterogeneous, distributed environments
– granular control
– Introspection
– attach to anything that can be referenced from XML
– controls data and procedure access
– more approachable policy management

117

XACML XACML –– Data ProtectionData Protection
• Participants include, but not limited to:

– Sun
– IBM
– Verisign
– Hewlett Packard
– Netegrity
– Cisco
– University Of Milan

118

Apache WS ProjectApache WS Project
• http://ws.apache.org/
• Project List:

– Addressing
– Axis
– EWS
– JaxMe
– jUDDI
– Kandula
– Mirae
– Muse
– Pubscribe
– Sandesha
– Scout
– SOAP
– TSIK
– Woden
– WSIF
– WSRF
– WSS4J
– XML-RPC

Conclusions?

Thanks!!!!

